

Cambridge Chemistry Challenge Lower 6th June 2018 Student Answer Booklet

In order to print your certificate, we need to store your name, school, and mark in a database: these details are only viewable by your school and our committee. Your participation in the competition indicates that you are happy for us to do this.

	Studen	it name						
					male		female	
	School							
	Date o	f exam _						
	School	year (eg	year 1	2)				
	Signati	ure						
	p2	р3	p4	р5	p6	р7	p8	Total
mark								

		Mark
1(a)	Percentage by mass of SiO ₂ and Al ₂ O ₃ in anorthosite:	[2]
1(b) (i)	Maximum oxidation state of titanium:	[1]
(ii)	Formulae of two oxides in ilmenite:	[2]
(iii)	Equation for reaction between ilmenite and hydrogen:	[1]
(iv)	Tonnes of moon rock needed for one tonne of oxygen gas:	[4]
1(c)	Equation for the reaction between ilmenite and methane:	[1]
\ -/	•	1

1(d)		Mark
(i)	Equation for regeneration of methane:	[1]
(ii)	The sign of the standard entropy change plus reason:	[2]
(iii)	Standard enthalpy change at 298 K:	[2]
(iv)	Standard entropy change at 298 K:	[1]
1(e) (i)	Standard Gibbs energy for the reaction at 298.0 K:	[2]

		Mark
1(e) (ii)	Minimum temperature at which products will be favoured:	[3]
1(f)	Elements in order of first ionisation energy, easiest first:	[2]
1(g) (i)	Units of constant C:	[1]
1(g) (ii)	Percentage of oxygen atoms ionized:	[4]

		Mark
2(a) (i)	Structure of propanoic acid:	[1]
(ii)	2-methyl butanoic acid:	[1]
2(b)	General formula for a carboxylic acid:	[1]
2(c) (i)	Percentage by mass of metal ion M in salt A :	[1]
(ii)	Empirical formula of salt A using M for the metal ion:	[2]
(iii)	Identify the metal that forms ion M :	[1]
2(d) (i)	Empirical formula of salt B:	[2]

٥/ط/		Mark	
2(d) (ii)	Equation for formation of salt B from hydrated salt A:	[1]	
(iii)	The oxidation state of metal ion M in salt B :	[1]	
(iv)	The carboxylic acid whose anion is present in salt B :	[1]	
2(e)	Equation for the formation of salt B:	[1]	
2(f) (i)	Structure of anion formed by removing one proton from ketone C :	[1]	
(ii)	Delocalisation of charge on the anion of ketone C :		
2(g) Represe	Representations of the anion of methyl 3-oxobutanoate: Pentation I Representation II	[2]	
2/h)	Circle the atom in diketone attacked by a nucleophile:	F41	
2(h)	Circle the atom in diketene attacked by a nucleophile:	[1]	
		Page 6	

2(i) The role of compound E in the	ne synthesis of Sweetener D :	Mark
electrophile radical initiator	base nucleophile	[1]
2(j) Structures:		
	Compound F	[3]
Compound G		
2(k) (i & ii) Structure of Compound H with	th most acidic proton circled:	
Compound H	·	[3]
(iii) Structure:		
Sweetener D		[3]
		Page 7

2(I)	Concentration of Sweetener D in city water (ng dm ⁻³):	Mark [1]
2(m)	Concentration of Sweetener D in pool water (ng dm $^{-3}$):	[1]
2(n)	Concentration of Sweetener D in urine (ng dm ⁻³):	[1]
2(0)	Volume of urine in the pool (dm ³):	[4]