Cambridge Chemistry Challenge Lower 6th June 2018 Student Answer Booklet In order to print your certificate, we need to store your name, school, and mark in a database: these details are only viewable by your school and our committee. Your participation in the competition indicates that you are happy for us to do this. | | Studen | it name | | | | | | | |------|---------|----------|--------|----|------|----|--------|-------| | | | | | | male | | female | | | | School | | | | | | | | | | Date o | f exam _ | | | | | | | | | School | year (eg | year 1 | 2) | | | | | | | Signati | ure | | | | | | | | | p2 | р3 | p4 | р5 | p6 | р7 | p8 | Total | | mark | | | | | | | | | | | | Mark | |-------------|---|------| | 1(a) | Percentage by mass of SiO ₂ and Al ₂ O ₃ in anorthosite: | [2] | | 1(b)
(i) | Maximum oxidation state of titanium: | [1] | | (ii) | Formulae of two oxides in ilmenite: | [2] | | (iii) | Equation for reaction between ilmenite and hydrogen: | [1] | | (iv) | Tonnes of moon rock needed for one tonne of oxygen gas: | [4] | | 1(c) | Equation for the reaction between ilmenite and methane: | [1] | | \ -/ | • | 1 | | 1(d) | | Mark | |-------------|--|------| | (i) | Equation for regeneration of methane: | [1] | | (ii) | The sign of the standard entropy change plus reason: | [2] | | (iii) | Standard enthalpy change at 298 K: | [2] | | (iv) | Standard entropy change at 298 K: | [1] | | 1(e)
(i) | Standard Gibbs energy for the reaction at 298.0 K: | [2] | | | | | | | | Mark | |--------------|--|------| | 1(e)
(ii) | Minimum temperature at which products will be favoured: | [3] | | | | | | | | | | 1(f) | Elements in order of first ionisation energy, easiest first: | [2] | | 1(g)
(i) | Units of constant C: | [1] | | 1(g)
(ii) | Percentage of oxygen atoms ionized: | [4] | | | | | | | | | | | | Mark | |-------------|--|------| | 2(a)
(i) | Structure of propanoic acid: | [1] | | (ii) | 2-methyl butanoic acid: | [1] | | 2(b) | General formula for a carboxylic acid: | [1] | | 2(c)
(i) | Percentage by mass of metal ion M in salt A : | [1] | | (ii) | Empirical formula of salt A using M for the metal ion: | [2] | | | | | | (iii) | Identify the metal that forms ion M : | [1] | | 2(d)
(i) | Empirical formula of salt B: | [2] | | | | | | ٥/ط/ | | Mark | | |-----------------|--|--------|--| | 2(d)
(ii) | Equation for formation of salt B from hydrated salt A: | [1] | | | | | | | | (iii) | The oxidation state of metal ion M in salt B : | [1] | | | (iv) | The carboxylic acid whose anion is present in salt B : | [1] | | | 2(e) | Equation for the formation of salt B: | [1] | | | 2(f)
(i) | Structure of anion formed by removing one proton from ketone C : | [1] | | | (ii) | Delocalisation of charge on the anion of ketone C : | | | | 2(g)
Represe | Representations of the anion of methyl 3-oxobutanoate: Pentation I Representation II | [2] | | | 2/h) | Circle the atom in diketone attacked by a nucleophile: | F41 | | | 2(h) | Circle the atom in diketene attacked by a nucleophile: | [1] | | | | | Page 6 | | | 2(i) The role of compound E in the | ne synthesis of Sweetener D : | Mark
 | |--|--------------------------------------|----------| | electrophile radical initiator | base nucleophile | [1] | | 2(j) Structures: | | | | | Compound F | [3] | | Compound G | | | | 2(k) (i & ii) Structure of Compound H with | th most acidic proton circled: | | | Compound H | · | [3] | | (iii) Structure: | | | | Sweetener D | | [3] | | | | Page 7 | | 2(I) | Concentration of Sweetener D in city water (ng dm ⁻³): | Mark
[1] | |------|---|-------------| | 2(m) | Concentration of Sweetener D in pool water (ng dm $^{-3}$): | [1] | | 2(n) | Concentration of Sweetener D in urine (ng dm ⁻³): | [1] | | 2(0) | Volume of urine in the pool (dm ³): | [4] | | | | |